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Summary Routine availability of hydrological, geological, and other physiographic data
today allows us to obtain a priori estimates of hydrologic model parameters prior to expli-
cit model calibration. When informative a priori estimates of model parameters are avail-
able, the problem of hydrologic model calibration becomes one of filtering, i.e. improving
the a priori estimates based on observations of input and output to and from the hydro-
logic system, respectively, rather than one of bounded global optimization based solely
on the input and output data as in traditional model calibration. Given that global optimi-
zation is computationally very expensive and does not, in general, transfer the spatial pat-
terns of soil and land surface characteristics to the model parameters, the filtering
approach is particularly appealing for automatic calibration of distributed hydrologic
models. Toward that ultimate goal, we explore in this work calibration of a lumped hydro-
logic model via limited optimization of a priori estimates of the model parameters. The
technique developed for the purpose is a simple yet effective and efficient pattern search
algorithm called the Stepwise Line Search (SLS). To evaluate the methodology, calibration
and validation experiments were performed for 20 basins in the US National Weather Ser-
vice West Gulf River Forecast Center’s (NWS/WGRFC) service area in Texas. We show that
SLS locates the posterior parameter estimates very efficiently in the vicinity of the a priori
estimates that are comparable, in terms of reducing the objective function value, to those
from global minimization. A cross validation experiment indicates that, when parametric
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uncertainty due to lack of calibration data is considered, limited optimization of a priori
parameters using SLS may be preferred to global optimization.
ª 2008 Elsevier B.V. All rights reserved.
Introduction

With the widespread availability of spatial data sets of soil,
land cover, land use, and others, it is now possible in many
parts of the world to obtain a priori estimates of hydrologic
model parameters following some form of re-parameteriza-
tion of them in terms of pedologic and physiographic data
(Koren et al., 2000, 2003; Leavesley et al., 2003; Mertens
et al., 2004; Vieux and Moreda, 2003). While such a priori
estimates are undoubtedly subject to significant uncertain-
ties due to various sources of error and scale differences in
observations and modeling, they reflect, to a varying degree
of accuracy, the spatial variability of the parameters, and
can provide an informative first-guess estimate for the
hydrologic model parameters prior to or in the absence of
explicit model calibration. When such a priori estimates
are available, the problem of automatic calibration be-
comes one of filtering, i.e., improving the a priori estimates
based on observed data (typically precipitation and stream-
flow), rather than one of bounded global optimization as in
traditional model calibration. While tremendous advances
have been made in recent years in estimation of parameters
in lumped hydrologic models and assessment of their uncer-
tainty (Beven and Kirkby, 1979; Duan, 2003; Gupta et al.,
2003; Koren et al., 2003; Kuczera and Parent, 1998; Schaake
et al., 2001), the currently available automatic calibration
techniques are generally based on global optimization which
requires a very large number of function evaluations. As
such, they are not very amenable to estimation of distrib-
uted parameters in fine-scale hydrologic modeling. Also,
while Monte Carlo-type automatic calibration techniques
may be reasonable for models that operate at daily or 6-
hourly time steps, they may be computationally too expen-
sive to be operationally viable at 1-hour time step even for
lumped models. In addition to computational consider-
ations, automatic calibration based on global optimization
as practiced today in lumped modeling does not transfer
the spatial patterns of pedologic and physiographic charac-
teristics observed in the spatial data to the hydrologic mod-
el parameters very well. For example, automatically-
calibrated parameters from global optimization for two
adjacent basins in the same area with similar pedologic
and physiographic properties may not share similarities that
are duly expected from physical considerations. As such,
automatic calibration via global optimization is not very
conducive to hydrologic modeling over a large area where
interdependence of hydrologic model parameters among
adjacent basins may be important (Koren et al., 2003). Gi-
ven the above observations, we argue that some combina-
tion of estimation of a priori parameters and ‘limited’
optimization of them offers a more effective and practical
path to estimation of distributed parameters than simply
extending global optimization to a distributed parameter
setting (Refsgaard, 1997). The overarching objective of this
work is to explore such a filtering approach toward develop-
ment of an operationally viable methodology for routine
automatic calibration of distributed hydrologic models. As
a first step toward that ultimate goal, we focus in this work
on calibration of a lumped hydrologic model. Specifically,
we seek a local (as opposed to global) parameter optimiza-
tion technique that offers the kind of performance and com-
putational efficiency for calibration of lumped models to
bring optimization of distributed parameters within the
realm of possibility for operational hydrologic forecasting.
We do recognize that successful application of such a tech-
nique to lumped models may not necessarily translate to
that to distributed models, for which different strategies
may be pursued (see, e.g., Eckhardt and Arnold, 2001; Mad-
sen, 2003; Vieux et al., 2004; Heuvelmans et al., 2006; Fran-
cés et al., 2007). We note here that application of the local
optimization technique described in this work to distributed
hydrologic models is ongoing and the results will be re-
ported in the near future.

In classical estimation theory, a priori information about
the model parameters is treated typically as a penalty term
added to the (typically quadratic) objective function (Jaz-
winski, 1970; Schweppe, 1973):

min J ¼ ½Q o � Q sðXÞ�TP�1Q ½Q o � Q sðXÞ�
þ ½X � Xa�TR�1X ½X � Xa�; ð1Þ

subject to XL 6 X 6 XU: ð2Þ

In the above, denotes the vector of the observed stream-
flow, X denotes the vector of the model parameters being
estimated, X = (x1, . . . ,xN), Qs(X) denotes the vector of the
model-simulated flow corresponding to Qo, PQ denotes the
error covariance matrix associated with the model-simu-
lated flow, Xa denotes the vector of the a priori estimates
of the model parameters, RX denotes the error covariance
matrix associated with Xa, and XL and XU denote the vectors
of the lower and upper bounds of X, respectively. Through-
out this paper, the upper- and lowercase letters denote vec-
tor and scalar variables, respectively. Though cast as a least
squares problem for simplicity and intuitiveness, the above
formulation, or its variant, is essentially equivalent to
Bayesian estimation (Misirli et al., 2003) or Kalman filtering
(Jazwinski, 1970) under a varying set of assumptions and
interpretations. The details of their relationships are not
central to the development of this paper and are not given
here. The above type of formulation has been widely used in
groundwater modeling with gradient-based optimization
techniques.

Because Qs(X) is generally a highly nonlinear function of X
and the a priori estimates of X are subject to potentially sig-
nificant biases due to errors and scale differences in obser-
vations and modeling, the above formulation faces at least
two serious difficulties in estimation of hydrologic model
parameters. The first is that, because of large nonlinearity
of Qs(X), even a small systematic bias or random error in
the a priori estimates of X can lead to a very poor solution.
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The second is that, because of large nonlinearity, algo-
rithms that are computationally efficient for smooth func-
tions, such as gradient-based minimization, work very
poorly even if the a priori estimates are in the right ballpark
in the parameter space. For these reasons, the current prac-
tice of automatic calibration in hydrologic modeling is dom-
inated by bounded global optimization (Archetti and
Schoen, 1984; Brazil, 1988; Duan et al., 1992, 2003; Evtush-
enko, 1973; Yapo et al., 1997) despite heavy computational
burden. In this work, we explore an alternative approach
based on informative a priori estimates of the parameters
and quasi-local optimization. The qualifier ‘quasi’ signifies
that, due to a fixed discrete step size used (see below for
comments), the numerical optimum found may not be collo-
cated with a local minimum closest to a priori parameter
set.

This paper is organized as follows. In Section ‘Proposed
approach’, we describe its critical components, estimation
of biases in input and unit hydrograph, and local optimiza-
tion of lumped hydrologic model parameters. In Section
‘Study area and data’, we describe the used study area
and the data. In Section ‘Results and evaluation’, we de-
scribe the experiment design and present the results. The
final section summarizes and concludes the paper.
Proposed approach

In light of the above observations, the approach taken here
is to start from the a priori parameter estimates, and locate
the nearest quasi-local minimum via pattern search. Fig. 1
illustrates a hypothetical search sequence where only two
parameters are being optimized. It may be seen that, for
the suggested approach to offer advantage over bounded
global optimization (e.g. Duan et al., 1992; Vrugt et al.,
2003a,b), not only the a priori estimates have to be ‘suffi-
ciently informative’ but also the search technique has to
Figure 1 Schematic in 2-D space o
be very efficient. These points will be made clearer later
in this section when the search algorithm is described. It
is important to point out in Fig. 1 that neither strategy guar-
antees the ‘true’ optimum. Our experience from extensive
calibration experiments indicates that the objective func-
tion surface usually has numerous small pits, which renders
‘global’ optimum practically unattainable. A local search
algorithm, on the other hand, may fast locate a physically
realistic quasi-minimum whose objective function value is
competitive with those of other local minima in the larger
parameter space.

The hydrologic model used in this work is the Sacramento
soil moisture accounting model (SAC, Burnash et al., 1973)
used operationally in the US National Weather Service
(NWS). The a priori estimates of the SAC parameters are ob-
tained from the soil-based parameterization of Koren et al.
(2000, 2003). The methodology relates the SAC parameters
with soil’s moisture-holding capacities estimated from the
STATSGO data (Miller and White, 1999). For further details,
the reader is referred to Koren et al. (2000, 2003). The soil-
based estimates of the SAC parameters have been used
extensively with generally favorable results in various appli-
cations: the Distributed Model Intercomparison Project
(DMIP, Smith et al., 2004; Reed et al., 2004), the North-
American Land Data Assimilation System (NLDAS, Cosgrove
et al., 2003; Lohmann et al., 2004; Mitchell et al., 2004),
the experimental implementation of variational assimilation
of hydrologic and hydrometeorological data at the NWS
West Gulf River Forecast Center (WGRFC; Seo et al.,
2003a,b), and the field evaluation of the NWS Hydrology
Laboratory Research Modeling System (HLRMS; Koren
et al., 2004; also known as the Distributed Hydrologic Mod-
el, DHM). In Section ‘Results and evaluation’ of this paper,
we assess the quality of the soil-based a priori estimates
of the SAC parameters by comparing model simulations
based on the soil-based estimates with those generated
from operational parameters.
f global and quasi-local search.
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Overview of overall calibration process

Because estimation of hydrologic model parameters de-
pends significantly on the availability and quality of the pre-
cipitation and streamflow data and the accuracy of the
routing model used, it is necessary to consider bias correc-
tion of forcing data and estimation of unit hydrograph to be
an integral part of automatic calibration. Below, we de-
scribe the three-step process employed in this work of (1)
estimating the long-term biases in the precipitation data
and potential evaporation climatology, (2) estimating the
empirical unit hydrographs (UH) used for routing, and (3) lo-
cally optimizing the SAC parameters for soil moisture
accounting. The above approach amounts to decomposing
the very large problem of simultaneously estimating input
biases and parameters for routing and hydrologic models
into three separate, smaller estimation problems and solve
them sequentially.

With the availability of high-resolution radar-based pre-
cipitation data (Hudlow, 1988; Young et al., 2000; Seo and
Breidenbach, 2002), the time step for the operational
hydrologic models used in NWS is being reduced from 6- to
1-hour for many fast-responding basins. While the radar-
based precipitation estimates offer a higher space–time
resolution, they are subject to various systematic and ran-
dom errors that depend significantly on the type of the
event and the location of the basin relative to the radar
(Wilson and Brandes, 1979; Smith et al., 1996). As such,
the magnitude and direction (i.e. over- or underestimation)
of the errors associated with radar precipitation estimates
vary significantly in space and time. Accordingly, due care
must be taken in hydrologic model calibration when radar-
based precipitation estimates are used. Also, the unit
hydrographs (UH) used operationally at the River Forecast
Centers (RFC) typically have a time step of 6 hours. While
techniques exist to infer 1-hour UHs from the 6-hour (Chow
et al., 1988; Maidment et al., 1996), the resulting 1-hour
UHs reflect only those features that can be resolved at the
6-hour time step. Hence, it is much preferable to obtain
1-hour UHs directly from the hourly observations of precip-
itation and streamflow, particularly for fast-responding ba-
sins. Below, we describe in some detail how long-term
biases in precipitation data and climatological potential
evaporation, and 1-hour empirical UHs were estimated prior
to calibration of the soil moisture accounting model.
Bias correction of input data

As noted above, radar precipitation estimates are subject to
various sources of systematic and random errors at various
scales (Wilson and Brandes, 1979; Smith et al., 1996; Chau-
bey et al., 1999; Seo et al., 1999; Mazi et al., 2004; McCabe
et al., 2005). Because such errors are event- and sampling
geometry-specific, they should ideally be corrected for each
event and for each basin. Such correction, however, re-
quires water budget analysis on an event-by-event basis,
which is not very practical in an operational setting. Here,
we correct only for long-term biases in MAPX data and MAPE
climatology, where MAPX denotes the mean areal precipita-
tion estimates based on radar and rain gauge data and MAPE
denotes the mean areal potential evaporation estimate
based on monthly climatology. The resulting adjustment
factors to MAPX and MAPE are referred to herein as PXADJ
and PEADJ, and denoted by bP and bE, respectively.

The adjustment factors to precipitation and potential
evaporation were estimated by solving the following inverse
problem via the variational assimilation method (Jazwinski,
1970; Li and Navon, 2001; Seo et al., 2003a,b):

minB J ¼
X
k

qo;k �
X
k

qs;kðB;Ua; XaÞ
" #2

; ð3Þ

subject to Skþ1 ¼ FðSk;B; XaÞ: ð4Þ

In Eq. (3), qo,k denotes the observed flow at the kth hour,
qs,k(B,Ua,Xa) denotes the simulated flow from SAC and UH
at the kth hour, B denotes the multiplicative biases in MAPX
and MAPE, bP and bE, respectively, Ua and Xa denote the a
priori estimates of the UH (i.e. the vector of the a priori
UH ordinates) and SAC parameters, respectively, and the
summation is over the entire duration of record except
the warm-up period of about a year at the beginning of
the record. In Eq. (4), Sk denotes the SAC states at hour k,
and F(Sk,B,Xa) denotes the soil moisture dynamics of SAC.
Note in Eq. (3) that, because we are minimizing the differ-
ence in the long-term aggregated flow, only the soil mois-
ture accounting matters and the shape of the UH does not
come into play.
Estimation of 1-hour empirical unit hydrograph

To estimate empirical UHs at 1-hour time step from 1-hour
MAPX and streamflow data, we solved the following con-
strained minimization problem via variational assimilation
(see also Appendix of Seo et al., 2003a,b):

minU J ¼
X

qo;k � qs;kðB�;U; XaÞ
� �2

; ð5Þ
subject to Skþ1 ¼ FðSk;B�; XaÞ: ð6Þ

In the above, the adjustment factor B* is from the minimiza-
tion in Eqs. (3) and (4), and U denotes the vector of the ordi-
nates of the UH being estimated. It is worth pointing out
that, because routing via UH is a linear operation, the above
minimization is linear in U, and as such the quadratic objec-
tive function in Eq. (5) yields global optimum. Our experi-
ence indicates that solutions from the above minimization
are subject to numerical oscillations near the origin and
over the right tail end of the estimated UH. As such, some
minor adjustment, or trimming, may be necessary to the
‘raw’ UH in order to produce physically realistic hydro-
graphs. Such adjustment may be made automatically by fol-
lowing a set of simply rules to ensure monotonicity in the
tail ends of the UH.

The final solution of U, or U*, from Eqs. (5) and (6) de-
pends on the choice of the a priori estimates of the SAC
parameters, Xa, and, to a lesser extent, on the bias correc-
tion factors, B*. Accordingly, the three-step process of esti-
mating B, U and X described above should ideally be iterated
until all solutions converge. Our experience from this and
other works indicates that the adjustment factors and UHs
are not very sensitive to the choice of the a priori SAC
parameters between the soil-based and the RFC-opera-
tional, and that for practical purposes additional iteration
of the three-step process is generally not necessary.
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Local optimization of SAC parameters

Once B* and U* obtained, the a priori SAC parameters, Xa,
are locally optimized. Below, we describe the optimization
procedure and the objective function used.

Stepwise line search
The local search technique developed in this work, referred
to herein as the Stepwise Line Search (SLS), is essentially a
successive minimization procedure along coordinate direc-
tions (Press et al., 1986), but with a fixed step size along each
coordinate (Fig. 1). In classification of calibration proce-
dures, SLS may be considered a modification of the pattern
search method (Whitehead et al., 1986; Teleb and Azadivar,
1994; Torczon, 1997). Algorithmically, SLS is made of the fol-
lowing steps: (1) start with the a priori estimates of the
hydrologic model parameters, (2) with the rest of the param-
eter estimates fixed to the a priori, increase or decrease the
value of the first parameter by one step to the direction of
decreasing objective function value, (3) with the first param-
eter now set to the new (or old, if the objective function va-
lue did not decrease) value, decrease or increase the value of
the second parameter by one step to the direction of
decreasing objective function value, (4) repeat Step 3 until
the objective function is minimized with respect to each of
all remaining parameters, (5) repeat Steps 2 through 4 until
no further reduction in the objective function is realized.
Based on extensive testing and analysis of the SAC response
function surface for the work reported in this paper, a simpli-
fication has been added to the above basic algorithm; if a gi-
ven parameter value remains the same in three consecutive
loops, where a loop represents an iteration of the stepwise
line search of all parameters being optimized, the parameter
is eliminated from further consideration. This simplification
usually results in as much as a fourfold reduction in computa-
tional amount. Depending on the basin and the period of re-
cord, the set of such non-sensitive parameters varies, a
reflection that interdependence among parameters varies
in space and time. The elimination of certain parameters in
the SLS procedure is based on the local sensitivity of the
parameters, which may vary considerably within the larger
search space for highly nonlinear models. As such, it is possi-
ble that the parameters that are eliminated at certain stages
in the iteration may become sensitive as the search pro-
gresses, an aspect that is not accounted for in SLS currently.

If the step size used is too large, SLS may miss a mini-
mum. Also, because the shape of the objective function
within the one-step neighborhood of the parameter space
may not be monotonic, the order in which the parameters
are searched may affect the outcome. These and other is-
sues are examined via sensitivity analyses and summarized
in Section ‘Results and evaluation’. The use of the SLS pro-
cedure, considered a ‘‘dumb’’ method for minimization of
smooth functions (Press et al., 1986), reflects the highly
nonlinear and irregular nature of the objective function sur-
face with respect to the hydrologic model parameters. Its
main benefits are physically realistic posterior estimates,
algorithmic simplicity, and computational efficiency.

Multi-scale objective function (MSOF)
One of the most important aspects of manual calibration of
hydrologic models is that human beings are very good at
assessing the quality of model simulation at many different
temporal scales of aggregation simultaneously (Seibert,
2000; Smith et al., 2003; Brazil, 1988). To emulate this mul-
ti-scale nature of manual calibration, we employ in this
work an objective function composed of contributions from
a wide range of time scales of aggregation (Madsen, 2000).
The rationale behind the approach is similar to Parada et al.
(2003) and is not elaborated here. The particular objective
function used in this work has the following form:

J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

r1

rk

� �2Xmk

i¼1
ðqo;k;i � qs;k;iðXÞÞ

2

vuut ; ð7Þ

where qo,k,i and qs,k,i denote the observed and simulated
flows averaged over time interval (i.e. the kth aggregation
scale), rk denotes the standard deviation of discharge at
that scale, n denotes the total number of scales used, and
mk is the number of ordinates at the scale k. In this work,
we used hourly, daily, weekly and monthly scales corre-
sponding to k = 1, 2, 3 and 4, respectively. Note in Eq. (7)
that the weight associated with each term is given by the in-
verse of the standard deviation of the flow at the respective
scales. This weighting scheme assumes that the uncertainty
in modeled streamflow at each scale is proportional to the
variability of the observed flow at that scale. Another
important motivation for using the multi-scale objective
function (MSOF) is that it smoothes the objective function
surface, and hence reduces the likelihood of the search get-
ting stuck in tiny ‘pits.’ These aspects of MSOF are further
described in Section ‘Results and evaluation’.

Study area and data

To evaluate the automatic calibration procedure described
above, a series of experiments were carried out for 20
headwater basins in the NWS West Gulf River Forecast
Center’s (NWS/WGRFC) service area (see Fig. 2). The ba-
sins, initially chosen for experimental implementation
and evaluation of the variational data assimilation proce-
dure (Seo et al., 2003a,b), are scattered over a large area
that covers diverse hydrology and hydroclimatology. Table
1 shows the basin identifiers, time to peak, area, mean
hourly flow, mean annual precipitation, and estimates of
the impervious fractional area (Seann Reed, personal
communication).

The hydrologic model used is the Sacramento model dri-
ven by 1-hourly radar-based mean areal precipitation
(MAPX) and the climatological mean areal potential evapo-
ration (MAPE) as adjusted by the Normalized Vegetation Dif-
ference Index (NDVI) climatology (Koren et al., 1998). The
period of record for MAPX data is from January 1995 through
December 2002, of which the first year were used for model
warm-up. Observed hourly discharges at the basin outlets
were used in calibration and evaluation.
Results and evaluation

Estimation of long-term biases in input data using Eqs. (3)
and (4) assumes that SAC closes water balance in the
long-term completely (i.e. all sources and sinks are
accounted for). It is known, however, that the study area



Figure 2 (a) Elevation; (b) precipitation; (c) soil surface texture; (d) surficial geology of the study area in the WGRFC’s service
area. Also shown are the boundaries of the study basins.
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is geologically diverse (see Fig. 2d) and includes karst for-
mations, which are not modeled by SAC. Table 2 shows
the adjustment factors, bP and bE, for all basins studied in
this work as estimated from the bias estimation procedure
described above. An adjustment factor of bP greater or less
than unity indicates an under- or overestimation in precipi-
tation amounts in MAPX, respectively. Note in Table 2 that
the adjustment factors for MAPE are very close to unity,
suggesting that MAPE is relatively bias-free. Those for
MAPX, on the other hand, show a larger basin-to-basin var-
iability around unity. Given that soil moisture balance is
probably not completely closed by SAC for some basins, sig-
nificant deviations from unity in bP may not be completely
attributable to biases in MAPX alone. We are currently com-
paring the MAPX data with estimates of mean areal precip-
itation based on rain gauge data alone (referred to as MAP)
so that the magnitude and direction of the biases in MAPX
may be ascertained.



Table 1 Geomorphological and hydroclimatological characteristics of the study basins in WGRFC

No. Basin ID USGS ID Time-to
-peak, h

Area,
km2

Average annual
discharge, m3/s

Average annual
precipitation, mm

Impervious
area, %

1 ATIT2 08159000 9 844 2.45 684 5.8
2 DCJT2 08053500 6 1039 2.38 684 –
3 GBHT2 08076000 7 137 2.58 640 28.8
4 GETT2 08104900 10 334 3.59 1175 1.3
5 GNVT2 08017200 16 212 1.47 605 7.6
6 HBMT2 08075000 4 246 2.28 982 44.1
7 HNTT2 08165500 3 769 8.69 999 –
8 JTBT2 08079600 8 945 1.93 640 –
9 KNLT2 08152000 7 904 1.28 491 0.3
10 LYNT2 08110100 19 508 2.08 868 2.1
11 MCKT2 08058900 13 427 1.63 806 1.6
12 MDST2 08065800 24 870 4.05 859 10.7
13 MTPT2 08162600 25 435 4.90 877 5.4
14 PICT2 08101000 6 1178 4.69 763 0.5
15 QLAT2 08017300 10 197 4.15 701 5.7
16 REFT2 08189500 36 1787 2.41 929 1.3
17 SBMT2 08164300 14 896 4.79 763 1.4
18 SCDT2 08176900 18 932 5.08 763 0.9
19 SOLT2 08041700 82 1746 2.82 763 –
20 UVAT2 08190000 2 1981 13.1 1315 4.8

Table 2 Multiplicative biases for MAPX and MAPE

No. Basin ID Basin name bSOIL
P bSOIL

E bOPER
P bOPER

E

1 ATIT2 Austin – Onion C 0.91 1.03 0.98 1.01
2 DCJT2 Justin – Denton C 0.82 1.07 0.84 1.07
3 GBHT2 Houston – Greens Bayou 1.06 0.97 1.04 0.99
4 GETT2 Georgetown – S Fk San Gabriel 1.02 0.99 1.14 0.93
5 GNVT2 Greenville – Cowleech C 1.08 0.97 1.09 0.96
6 HBMT2 Houston – Brays Bayou 1.53 0.67 1.51 0.64
7 HNTT2 Hunt – Guadalupe R 0.73 1.03 n/a n/a
8 JTBT2 Justiceburg – Double Mt Fork 1.17 0.95 1.24 0.94
9 KNLT2 Kingsland – Sandy C 0.90 1.05 n/a n/a
10 LYNT2 Lyons – Davidson C 0.90 1.04 0.98 1.01
11 MCKT2 McKinney – East Fork Trinity 1.07 0.94 1.10 0.92
12 MDST2 Madisonville – Bedias C 1.04 0.98 1.08 0.96
13 MTPT2 Midfield – Tres Palacios 1.18 0.84 1.13 0.88
14 PICT2 Pidcoke – Cowhouse C 0.80 1.09 0.88 1.07
15 QLAT2 Quinlan – South Fork Sabine 1.19 0.91 1.20 0.89
16 REFT2 Refugio – Mission R 0.85 1.06 0.93 1.04
17 SBMT2 Sublime – Navidad R 1.02 0.99 1.07 0.94
18 SCDT2 Schroeder – Coleto C 0.88 1.02 0.96 1.01
19 SOLT2 Sour Lake – Pine Island B 0.99 1.27 0.96 1.12
20 UVAT2 Uvalde – Nueces 0.71 1.06 0.82 1.05

Average 1.01 0.99 1.05a 0.97a

a Excludes HNTT2 and KNLT2.
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In the semi-arid western part of the study area, signifi-
cant events occur rather infrequently. Hence, the warm-
up period may not be of sufficient length for some basins.
Due to the shortness of the radar-based precipitation data,
independent validation over a long period was not possible.
Instead, here we carried out a cross validation experiment
using five different combinations of 4- and 1-year depen-
dent and independent data sets, respectively. The calibra-
tion and validation experiments were designed to help
answer the following questions: (1) How do the a priori
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soil-based estimates of the SAC parameters compare with
the parameter estimates used operationally? (2) How much
can the a priori estimates be improved by optimization? (3)
How does SLS compare with the Shuffled Complex Evolution
algorithm (SCE, Duan et al., 1992; Duan, 2003) in terms of
the quality of optimized parameters, the rate of conver-
gence, and the number of function evaluations needed?
(4) How much do uncertainties in the a priori parameter
estimates affect the quality of the posterior estimates? (5)
What is the optimum step size for SLS?

Because estimation of PXADJ and PEADJ depends on the
SAC parameters and estimation of UH depends on the
adjustment factors as well as the SAC parameters, the final
solution for the SAC parameters from the 3-step estimation
process described in Section ‘Proposed approach’ depends
on the choice of the starting (i.e. first-guess) SAC parameter
estimates. To assess the sensitivity to the initial parameter
estimates and to evaluate the goodness of the soil-based a
priori estimates, we used two different sets of a priori
SAC parameter estimates in this work, the soil-based and
the 6-hourly operational. They are referred to herein as
SOIL and OPER, respectively. The 6-hourly operational, or
initial OPER, represents the SAC parameter estimates that
Table 3 Calibrated SAC-SMA model parameters and their feasibl

No Parameter Description

1 UZTWM The upper layer tension water capa
2 UZFWM The upper layer free water capacity
3 UZK Interflow depletion rate from the u
4 ZPERC Ratio of maximum and minimum pe
5 REXP Shape parameter of the percolation
6 LZTWM The lower layer tension water capa
7 LZFSM The lower layer supplemental free
8 LZFPM The lower layer primary free water
9 LZSK Depletion rate of the lower layer su
10 LZPK Depletion rate of the lower layer pr
11 PFREE Percolation fraction that goes direc

Figure 3 Example empirical unit hydr
have been developed over the years at the RFC and are cur-
rently used operationally for model runs at 6-hour time
step. Given each set of parameter estimates, the correction
factors to MAPX and MAPE and the empirical UHs were esti-
mated as described in Section ‘Study area and data’, and
eleven SAC parameters (see Table 3) were optimized using
SLS. For comparison, bounded global optimization of the
eleven SAC parameters using the SCE algorithm was also car-
ried out. The upper and lower bounds used for SCE are based
on Koren et al. (2003) and are shown in Table 3.

Calibration results

Table 2 shows the long-term biases in MAPX and MAPE as
estimated from the procedure described in Section ‘Pro-
posed approach’. The bias estimation procedure assumes
that all sources and sinks are accounted for by the hydro-
logic model. As noted in this section, however, parts of
the study area are characterized by karst geology. Also, a
number of basins are known to have significantly large
impervious areas (Elvidge et al., 2004), a piece of informa-
tion that was not available at the time of this work. Hence,
it is acknowledged that some of the bias estimates shown in
e ranges (reproduced from Koren et al., 2003)

Ranges

city, mm 10–300
, mm 5–150
pper layer free water storage, day�1 0.10–0.75
rcolation rates 5–350
curve 1–5
city, mm 10–500
water capacity, mm 5–400
capacity, mm 10–1000
pplemental free water storage, day�1 0.01– 0.35
imary free water storage, day�1 0.001–0.05
tly to the lower layer free water storages 0.0–0.8

ographs for six of the study basins.



Figure 4 Multi-scale objective function values associated with a priori SOIL (solid bar) and initial OPER (empty bar) parameters.
See Table 2 for basin numbers and names.

Figure 5 Multi-scale objective function values associated (a) with a priori and optimized SOIL parameters and (b) with initial and
optimized OPER parameters. The optimization is by SLS and SCE. See Table 2 for basin numbers and names.
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Table 2 may be subject to larger uncertainties than others.
We may summarize Table 2 as follows: (1) the magnitude of
the biases in MAPX or MAPE is modestly sensitive to the
choice of the a priori SAC parameters in that bSOIL
P and

bOPER
P as well as bSOIL

E and bOPER
E differ from each other only

marginally, (2) for a given basin, the MAPX data may have
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a significant bias, and (3) the bias in the NDVI-adjusted
MAPE climatology is relatively small.

Fig. 3 shows examples of the empirical UHs estimated
from the procedure described in Section ‘Proposed ap-
proach’. They are based on the bias-corrected MAPX data
and MAPE climatology. The results for both SOIL and OPER
are shown in the figure. It is seen that UH is modestly sensi-
tive to the choice of the a priori SAC parameters. Perhaps
the most notable feature in the UH’s shown in Fig. 3 is that
they do not, in general, fit very well widely used functional
approximations for UH (e.g., two-parameter Gamma, Maid-
ment et al., 1996), an indication that some basins studied in
this work may not be appropriate for lumped modeling. The
above results reinforce the importance of bias correction in
the forcing data, accurate routing, and assessment of inter-
dependence among all major sources of error that may im-
pact calibration of the hydrologic model.

The multi-scale objective function values associated
with the a priori SOIL and the initial OPER parameter esti-
mates are shown in Fig. 4 for all basins. The figure indicates
that the a priori soil-based estimates of the SAC parameters
are of comparable quality, in terms of hydrograph simula-
tion at the basin outlet, to the operationally-used esti-
mates, and suggests that the soil-based estimates offer a
very good initial guess for the SAC parameters. Fig. 5a shows
Figure 6 Comparison of observed hydrographs and hydrograph sim
SLS-optimized SOIL parameters and the initial and SLS-optimized O
the multi-scale objective function values associated with
the a priori SOIL and optimized SOIL parameter estimates.
Similarly, Fig. 5b shows the multi-scale objective function
values associated with the initial and optimized OPER. In
both figures, the optimization is carried out by both SLS
and SCE (for SCE, the following parameter values were used
maximum number of function evaluation NFE,max = 99,999,
number of complexes p = 13). The figures indicate that both
the a priori SOIL and the initial OPER can be significantly im-
proved by optimization and that, overall, the improvement
by SLS is almost as good as that by SCE. That the objective
function value for SCE is not always smaller that for SLS is a
reflection of the quasi-global nature of the optimization by
SCE (Fig. 1). Figs. 6a and b show examples of the simulated
hydrographs based on various SAC parameter estimates
optimized by SCE and SLS as compared with the observed.
Overall, the simulated hydrographs based on the optimized
parameter estimates are significantly better than those
from the a priori SOIL or the initial OPER. The differences
between SLS- and SCE-calibrated hydrographs, on the other
hand, are rather minor.

Fig. 7a shows the multi-scale objective function value as
a function of the number of function evaluations from the
SLS and SCE iterations. Because SLS is a quasi-local opti-
mizer with an informative prior whereas SCE is a quasi-glo-
ulated based on the SCE-optimized parameters, the a priori and
PER parameters. The results are for HBMT2 (a) and DCJT2 (b).
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bal optimizer with a diffuse prior (in that only the physically
reasonable bounds are known), the two scatter plots in the
figure may not be compared directly against each other.
Here, they are shown together to illustrate the informative-
ness of the a priori SOIL estimates and the effectiveness of
SLS. That the a priori soil-based estimates are of high qual-
ity may be seen from the objective function value associ-
ated with SLS at the origin of the plot, relative to the
range of objective function values associated with SCE near
the origin (see also Table 4). The computational economy of
SLS is also clearly seen. The figure shows that SLS is extre-
mely efficient; the rate of convergence is at least as fast
as the fastest by SCE at any point in the iteration. As in
any filtering, the premise behind the proposed approach is
that, in the absence of strong observational evidence, the
posterior parameter estimates should not deviate much
from the a priori (Jazwinski, 1970). Fig. 7b shows the dis-
tance between the initial parameter estimates and the
parameter values being optimized as a function of the num-
ber of function evaluations, where the distance is defined as
the Euclidean norm of the vector connecting the a priori and
the optimized points in the normalized parameter space.
Figs. 7a and b indicate that the final parameter estimates
from SLS remain much closer to the a priori estimates
(0.36 for SLS vs. 1.78 for SCE), while the multi-scale objec-
tive function values are very similar (23.13 for SLS vs. 21.83
for SCE). Similar performance measures were used by Mer-
tens et al. (2004) in their investigation of the trade-offs be-
Figure 7 (a) Multi-scale objective function value vs. the number o
right plot is a zoom-up near the origin. (b) Distance from the a pr
optimization sequence. The light and dark markers denote the multi
the SCE- and SLS-optimized parameters, respectively. The results ar
the minimum from SCE.
tween goodness-of-fit and deviation from the a priori
parameter values using SCE.

Fig. 8 shows the contributions of the individual terms in
the multi-scale objective function in Eq. (3). The optimiza-
tion is based on SLS and SCE, and the a priori estimates used
for SLS is SOIL. For SCE, the choice of a priori estimates is
irrelevant. The figure indicates that the rate of reduction
in the objective function value generally differs among dif-
ferent time scales of aggregation. At the beginning of the
search, the long-term components, corresponding to 10-
and 30-day aggregation scales, contribute more to the over-
all improvement than the short-term. Later in the optimiza-
tion, however, short-term components, 1-hour and 1-day
scales, become dominant in the optimization. This behav-
ior, observed for most of the basins studied in this work,
partially mimics the manual calibration process that gener-
ally addresses low flow components first (Smith et al.,
2003).

Fig. 9 shows the scale-specific root mean square error
(RMSE) of simulated flow normalized by the standard devia-
tion of observed flow at that scale. It shows how the residual
errors in the simulated flow are decomposed into scale-spe-
cific contributions under the MSOF criterion. The results
shown are for three basins, LYNT2, MCKT2 and ATIT2. There
are three sets of curves of scale-specific normalized RMSE
(NRMSE): (1) all four scales were included in the objective
function (NRMSE4); (2) only the hourly and monthly scales
were included (NRMSE2), and (3) only the hourly scale was
f function evaluations in the optimization sequence. The upper-
iori parameters vs. the number of function evaluations in the
-scale objective function value and the distance associated with
e for ATIT2. The dotted line marked ‘Min (SCE)’ corresponds to



Table 4 Comparison of search characteristics of SCE and SLS for the calibration period

Basin Initial
MSOF

SCE SLS Percent
difference
in final
MSOF

D, % KSCE

KSLS

Final
MSOF

Normalized
distance
DSCE

Number of
function
evaluations
KSCE

Final
MSOF

Normalized
distance
DSLS

Number of
function
evaluations
KSLS

1 2 3 4a 5 6 7a 8 9b 10c 11

ATIT2 23.21 19.36d 1.59 17,089 20.84 0.90 174 7.6 43.4 98.2
DCJT2 18.47 16.13 1.87 30,603 16.57 0.51 202 2.7 72.7 151.5
GBHT2 13.82 11.35 1.83 12,798 11.65 0.55 191 2.6 69.9 67.0
GETT2 17.39 16.22 1.39 18,194 16.52 0.57 176 1.8 59.0 103.4
GNVT2 16.89 14.39 2.30 12,669 14.60 1.23 292 1.5 46.5 43.4
HBMT2 35.69 27.02 2.09 16,450 28.52 0.93 234 5.6 55.5 70.3
HNTT2 39.50 30.99 1.87 8873 31.01 1.01 313 0.1 46.0 28.3
JTBT2 13.73 12.19 1.21 37,083 12.86 0.20 121 5.5 83.5 306.5
KNLT2 18.38 11.55 2.01 16,597 13.67 0.83 191 18.4 58.7 86.9
LYNT2 10.51 10.22 1.97 7604 10.37 0.32 124 1.5 83.8 61.3
MCKT2 16.84 13.87 2.18 12,288 14.18 1.03 315 2.2 52.8 39.0
MDST2 33.92 25.79 2.26 17,575 28.56 0.80 216 10.7 64.6 81.4
MTPT2 35.43 33.92 2.19 7589 33.83 0.96 283 �0.3 56.2 26.8
PICT2 38.99 38.00 1.50 10,826 37.68 0.28 129 �0.8 81.3 83.9
QLAT2 15.63 14.38 2.09 11,540 14.67 0.45 181 2.0 78.5 63.8
REFT2 55.13 44.95 2.28 18,978 46.66 1.02 326 3.8 55.3 58.2
SBMT2 56.66 53.92 1.35 14,317 54.57 0.78 180 1.2 42.2 79.5
SCDT2 49.03 47.27 2.42 14,548 47.55 0.74 185 0.6 69.4 78.6
SOLT2 29.02 25.04 1.66 13,045 25.48 0.52 222 1.8 68.7 58.8
UVAT2 107.27 53.66 2.37 7271 53.71 1.29 306 0.1 45.6 23.8
a The normalized distance is defined as the Euclidean norm of the vector connecting the a priori and the optimized points in the

normalized parameter space.
b Percent difference in final is defined as [(MSOF (SLS) � MSOF (SCE))/MSOF (SCE) * 100%.
c Relative departure from the initial point D = (DSCE � DSLS/DSCE)*100%.
d The smaller MSOF between SCE and SLS is in bold.
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included (NRMSE1). Note that NRMSE4 is generally smaller
than NRMSE2. Note also that, while NRMSE1 is smaller than
NRMSE4 at the hourly scale, it is larger than NRMSE beyond
the hourly scale. These observations confirm the expected
scale dependence of calibration errors under the MSOF cri-
terion, and support the use of MSOF in automatic calibration
of hydrologic models.

Another important aspect of MSOF is that, owing to the
contributions from a wide range of frequencies of flow,
MSOF helps smooth (i.e. regularize) the objective function
surface, thus enabling gradient-based search to be more
effective. Fig. 10a shows an example of the objective func-
tion value as a function of the two SAC parameters, UZTWM
and UZFWM (see Table 3 for explanation), in which the
objective function is made only of hourly and monthly con-
tributions. Figs. 10b and c show the partial derivatives of
the objective function with respect to UZTWM and UZFWM,
respectively. Figs. 10d–f are the same as Fig. 10a–c,
respectively, except that they are based on the MSOF com-
posed of contributions from all four scales (i.e. hourly, dai-
ly, weekly and monthly). Note that the MSOF in Fig. 10d is
smoother than the objective function surface in Fig. 10a,
and that the gradients in Figs. 10e and f are generally smal-
ler and less spatially complex (i.e. in the parameter space)
than those in Fig. 10b and c, respectively. The significance
of a less complex gradient surface is that the zero-gradient
isolines in Figs. 10b and c are significantly shorter in length
than those in Fig. 10e and f, respectively. Hence, on aver-
age, there is a smaller chance of being wrongly attracted
to an area of zero gradient even though the area may in fact
be distant from a substantial minimum.

Validation results

All results presented above are based on the same data sets
used to estimate the parameters themselves. Due to the
shortness of the radar-based precipitation data, true valida-
tion over a long period could not be performed. As an alter-
native, we carried out a cross validation experiment in
which each year in the five-year period (July 1998 through
July 2003) was withheld from calibration and was used only
for validation. The results are then plotted in the form of a
wind rose where wind directions are replaced by the eleven
SAC parameters (see Table 3) and the wind speed is re-
placed by the optimized parameter estimates normalized
by the feasible region of the parameters. The parameter
estimates at the outer- and innermost circles in the rose
thus correspond to the maximum and the minimum shown
in Table 3, respectively. The resulting plot is referred to
herein as the ‘Parameter Rose.’ Figs. 11a and b show the



Figure 8 Decomposition of the multi-scale objective function into scale-specific contributions over the course of a parameter
optimization run by SCE (light markers) and SLS (dark markers) for ATIT2.
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Parameter Roses for two basins, ATIT2 and GNVT2, respec-
tively. In each figure, the black solid line represents the soil-
based a priori estimates of the SAC parameters. The differ-
ent markers represent the SLS-optimized (open markers)
and the SCE-optimized (shaded markers) parameter esti-
mates obtained from m different calibration periods, each
with (m � 1) years in duration (m was equal to 4 or 5 years
depending on the available period of observation for the ba-
sin). The two outer and inner roses connect the largest and
the smallest parameter estimates among the four or five
optimized parameter sets. Hence, the area between the
two roses reflects the parametric uncertainty due to the
uncertainty in the data (for stationary time series, the
two roses would coincide if the period of record is suffi-
ciently large). The multi-scale objective function values
from SCE and SLS associated with the different calibration
periods each with (m � 1) years in duration are also plotted
in the figure. Similarly, the four multi-scale objective func-
tion values associated with the m independent periods each
with one year in duration are shown as well. Figs. 11a and b
may be summarized as follows. The SCE-optimized parame-
ter estimates usually span the entire parameter space
whereas the SLS-optimized parameters tend to stay well
within the feasible region of the parameter space and form
relatively tight bounds. It is interesting to note that, for
semi-arid ATIT2 and GETT2, the SLS-optimized parameter
estimates form particularly tight bounds and lie very closely
to the a priori estimates. In general, the performance of SCE
is only marginally better than that of SLS in reducing the
objective function value in the calibration (i.e. dependent)
periods. In the validation (i.e. independent) periods, how-
ever, the performance of SLS is comparable to or better
than (for 65% of the cases) that of SCE. It suggests that,
even if one discounts the physical realism of the optimized
parameter estimates, the quasi-local optimization of a pri-
ori parameter estimates offers significant advantages over
‘global’ optimization given the uncertainty inherent in the
input data alone.

Sensitivity to the quality of a priori estimates

As described above, SLS is a quasi-local optimization pro-
cedure for locating minima in the vicinity of the a priori
parameter estimates. Hence, unlike SCE, calibration re-
sults from SLS depend significantly on the quality of the
a priori parameter estimates. To assess the effect of



Figure 9 Scale-specific normalized RMSE under a varying number of time scales of aggregation in the objective function. NRMSE1,
NRMSE2 and NRMSE4 show the normalized RMSEs when the objective function is made of one, two and four scale-specific error
terms, respectively. The results are for LYNT2, MCKT2, ATIT2 (from the top to the bottom).
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uncertainty in the a priori parameter estimates on the
optimization results, we carried out a series of sensitivity
analysis as described below. To degrade artificially the
quality of the soil-based a priori estimates, we added
zero-mean white noise to the a priori estimates with stan-
dard deviations of 5%, 10%, and 20% of those of the a priori
estimates. The degraded a priori SAC parameter estimates
were then optimized using SLS starting from each of the
randomly perturbed parameter estimates. A total of 500
trials was carried out. Figs. 12a–c show the empirical
probability density functions (PDF) of the three calibrated
parameters, UZTWM, UZFWM, and ZPERC for ATIT2. Note
that, over the range of the noise levels prescribed, the
PDFs of the optimized parameter estimates cover a rather
narrow region in the parameter space, and that the most
probable parameter values differ very little across differ-
ent noise levels and from the parameter values calibrated
with no noise added. It was also observed that ZPERC,
which is responsible for percolation, is the least identifi-
able among the parameters in that its PDF’s are signifi-
cantly more diffuse. This is in agreement with finding of
Gupta and Sorooshian (1983) and Sorooshian and Gupta
(1983) in which they attribute the behavior to the model
structure. Fig. 12d shows the PDF of the multi-scale objec-
tive function value corresponding to Fig. 12a–c, expressed
as the percent difference in the MSOF associated with the
a priori parameter estimates. Note that the variability of
the multi-scale objective function is rather small (in the
range of ±3%) even when a noise of 20% was applied to
the a priori parameters. It suggests that sensitivity of SLS
to the goodness of the initial (i.e. a priori) parameter sets
may be relatively modest.

Sensitivity to the step size

Unlike SCE, which has multiple parameters to contend with
(though only one, the number of complexes, may be consid-
ered critical), SLS has only one adaptable parameter, the
search step size (expressed as a fraction of the feasible
parameter region). Generally speaking, the choice of the
step size depends on the objective function surface in the
parameter space and, to a lesser degree, computational
considerations. If model parameters are highly collinear, it
is very likely that the objective function surface is flat
and has a wide minimum region. Moreover, there may be
numerous ‘pits’ in the minimum region due to data and
model uncertainties. As such, too small a step size can pre-
maturely terminate the search at a ‘pothole’ nearest to the
a priori parameter estimates. Too large a step size, on the
other hand, may skip over the true minimum. A comprehen-
sive and rigorous analysis of the dependence of the optimal
step size on the objective function surface is left as a future
endeavor. In this work, we performed a numerical experi-
ment to determine the step size empirically. Fig. 13 shows
the minimum values of MSOF for nine WGRFC basins as ob-
tained using various step sizes, ranging from 1/5000 to 1/
3 of the entire feasible region of the parameter space (Ta-
ble 3). The figure suggests that the step size for SLS does
not have to be known precisely, and that any step size with-
in the interval [1/200; 1/20] leads to similar performance.



Figure 10 (a) The objective function surface with respect to UZFWM and UZTWM. The objective function is made of model
simulation errors at the hourly and monthly scales of aggregation only. (b) Gradient of the objective function shown in (a) with
respect to UZFWM. (c) Same as (b), but with respect to UZTWM. Figures d–f are the same as figures a–b, respectively, except that
the objective function is made of simulation errors at the hourly, daily, weekly and monthly scales of aggregation.
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All results presented in this paper were based on the step
size 1/50.
Summary and conclusions

Automatic calibration of hydrologic models via local optimi-
zation of a priori parameter estimates is explored as a com-
putationally inexpensive and physically appealing alternative
to bounded global optimization. The hydrologic model used
is the Sacramento soil moisture accounting model driven by
hourly multisensor (radar and rain gauge) precipitation forc-
ing. The a priori estimates of the SAC parameters used are
from the soil-based parameterization of Koren et al. (2000,
2003). The technique developed in this work for local optimi-
zation is a simple but very effective and efficient pattern
search algorithm referred to as the Stepwise Linear Search
(SLS). To evaluate the technique, calibration and validation
experiments were carried out using 20 basins in the National
Weather Service West Gulf River Forecast Center’s (NWS/
WGRFC) service area in Texas, USA. For comparison, global
optimization using the Shuffled Complex Evolution algorithm
(SCE, Duan et al., 1992; Duan, 2003) was also carried out. To
correct biases in the precipitation data and potential evapo-
ration climatology and to estimate hourly empirical unit
hydrographs, variational assimilation techniques were used.
To examine the sensitivity of bias correction and unit hydro-
graph estimation to the quality of the initial hydrologic mod-
el parameters, two sets of hydrologic model parameters
were used: the soil-based (Koren et al., 2000, 2003) and
the operationally-used.

The results indicate that, in general, the quality of the
soil-based a priori estimates of the SAC parameters is com-
parable to that of the operationally-used estimates at the
RFC, and that both the soil-based and the operationally-
used parameters can be improved significantly by optimiza-
tion. In the dependent validation that covered a 5-year per-
iod, the performance of SLS was found to be only slightly
inferior to that of SCE in terms of reduction in the objective
function value (see Table 4). In the independent validation
that covered five 1-year periods, however, the performance
of SLS was found to be comparable to or somewhat better
than that of SCE (see Table 5). Furthermore, validation re-
sults showed that, whereas the posterior (i.e. optimized)
estimates from SLS remain consistently close to the a priori
estimates, the globally optimized estimates from SCE are
spread over the entire feasible region of the parameter
space. In terms of computational economy, SLS needed only



Figure 11 Examples of the normalized Parameter Rose for ATIT2 and GNVT2. In each rose, the ‘doughnut’ represents the entire
parameter space (normalized to [0,1]). The solid line represents the a priori parameter estimates. The light- and dark-shaded areas
represent the sub-space spanned by SCE- and SLS-optimized parameter estimates, respectively. MSOF of calibration and validation
periods is shown at the bottom.
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about 1/20–1/300 of the function evaluations required by
SCE. It suggests that, given the uncertainties in the input
data alone (be they due to lack of data or poor quality),
the filtering approach to hydrologic model calibration via lo-
cal optimization of a priori parameter estimates offers a
physically-consistent and computationally very efficient
alternative to global optimization.

In an attempt to emulate the manual calibration process
and to improve the efficiency and effectiveness of SLS, we
also explored the use of a multi-scale objective function
(MSOF), composed of contributions from simulation errors
aggregated from hourly to monthly scales. The results show
that the MSOF helps smooth, or regularize, the objective
function surface and reduces the likelihood of the algorithm
being trapped in a ‘pothole.’ It is also shown that MSOF
yields smaller errors in simulated flow across a range of
temporal scales of aggregation than an objective function
made only of short- and long-term errors (e.g. a combina-
tion of root mean square and mean errors).

To assess the sensitivity of the proposed methodology to
the goodness of the a priori parameter estimates, a numer-
ical experiment was carried out. It is shown that, in the
probabilistic sense, the resulting posterior (i.e. optimized)
estimates do not differ significantly from one another
whether an additional noise of 5%, 10% or 20% of the vari-
ability of the parameters is added to the a priori estimates,
an indication that the procedure is rather robust. It is also
important to note that the reduction in MSOF was signifi-
cantly lower than the level of added noise. These results
are necessarily limited to SAC and the soil-based parameters
derived from Koren et al. (2003). While application of SLS to
other lumped models and a priori parameters (presumably
of widely varying quality) is seemingly straightforward, it
is difficult to predict how SLS may perform, an area of re-
search left as a future endeavor.

As stated in the Introduction Section, the ultimate goal of
the proposed approach is automatic calibration of distrib-
uted-parameter hydrologic models. Even with greatly re-
duced computational burden, exhaustive optimization of
distributedparameters is highly impractical, if not infeasible.
As such, efforts should be directed to attaining a practical
balance between reducing the number of control variables
and increasing the spatial resolution of the model while
accounting for input, model and parametric uncertainties.



Figure 12 (a) Empirical probability density functions of the posterior (i.e. optimized) estimate of UZTWM. The optimization is by
SLS. The a priori value of UZTWM was given a random noise ranging from 5%, 10% to 20% (denoted as 0.05, 0.1 and 0.2, respectively)
of the spatial variability of the a priori UZTWM in the basin. (b) Same as (a), but for UZFWM. (c) Same as (a), but for ZPERC. (d)
Empirical probability density functions of the relative difference between the posterior multi-scale objective function value based
on the noise-added a priori parameters and that based on the a priori parameters without noise.

Figure 13 Sensitivity of the final multi-scale objective function value (MSOF) to the step size used in SLS. The values on the y-axis
represent the MSOFs associated with the posterior parameter estimates.
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Table 5 Comparison of multi-scale objective function values from SCE and SLS for five calibration and validation periods of 4-
and 1-years durations, respectively

Basin SCE SLS

1 2 3 4 5 1 2 3 4 5

Calibration
GBHT2 14.1a 14.0 13.8 14.3 13.8 14.3 14.4 14.0 14.6 14.1
GETT2 18.3 18.6 18.9 12.6 18.3 18.8 18.9 19.5 12.9 18.8
HBMT2 31.9 33.5 32.9 33.3 32.1 33.4 35.4 34.8 35.0 33.0
HNTT2 36.8 38.8 28.3 34.2 36.5 36.9 38.8 28.6 34.5 36.7
JTBT2 11.7 12.6 7.21 15.7 13.2 12.6 12.2 7.15 15.6 13.8
KNLT2 15.0 18.7 18.0 18.7 10.9 17.3 20.1 19.8 19.7 11.2
LYNT2 12.7 12.8 12.3 12.2 8.54 12.7 13.0 12.4 12.3 8.69
MTPT2 38.0 41.7 41.3 40.0 38.0 37.9 41.5 41.3 40.1 37.9

Validation
GBHT2 13.0 14.6 15.4 10.3 15.0 14.8 14.3 15.7 11.4 15.4
GETT2 14.2 9.73 3.57 27.7 13.9 14.1 8.71 3.50 26.2 13.0

HBMT2 29.9 27.9 25.1 21.5 35.9 27.0 34.6 27.6 25.2 47.1
HNTT2 33.3 4.81 66.1 47.4 32.0 32.0 4.51 66.3 44.1 32.0
JTBT2 12.4 4.32 25.9 9.59 26.2 4.96 3.79 24.7 6.47 17.6

KNLT2 31.9 4.38 13.7 18.0 47.9 28.5 11.1 10.8 15.3 43.1

LYNT2 11.4 5.89 11.0 11.4 36.9 11.8 4.92 10.3 11.1 37.3
MTPT2 45.1 16.2 20.9 34.2 52.4 45.4 14.5 19.6 33.7 52.0
a The smaller MSOF between SCE and SLS is in bold.
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Francés, F., Veléz, J.I., Veléz, J.J., 2007. Split-parameter structure
for the automatic calibration of distributed hydrological models.
J. Hydrol. 332, 226–240.

Gupta, H.V., Bastidas, L.A., Vrugt, J.A., Sorooshian, S., 2003.
Multiple criteria global optimization for watershed model



Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search 127
calibration. In: Duan et al. (Eds.), Calibration of Watershed
Models, Water Science and Application, vol. 6. American
Geophysical Union, Washington, DC, pp. 125–132.

Gupta, V.K., Sorooshian, S., 1983. Uniqueness and observability of
conceptual rainfall–runoff model parameters: the percolation
process examined. Water Res. Res. 19, 269–276.

Heuvelmans, G., Muys, B., Feyen, J., 2006. Regionalisation of the
parameters of a hydrological model: comparison of linear
regression models with artificial neural nets. J. Hydrol. 319,
245–265.

Hudlow, M.D., 1988. Technological developments in real-time
operational hydrologic forecasting in the United States. J.
Hydrol. 102, 69–92.

Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory.
Academic Press, p. 376.

Koren, V.I., Smith, M., Wang, D., Zhang, Z., 2000. Use of soil
property data in the derivation of conceptual rainfall–runoff
model parameters, preprints. In: 15th Conf. on Hydrol., Long
Beach, CA, Amer. Meteor. Soc., 10–14 January, 2000, pp. 103–
106.

Koren, V., Smith, M., Duan, Q., 2003. Use of a priori parameter
estimates in the derivation of spatially consistent parameter
estimates of rainfall–runoff models. In: Duan et al. (Eds.),
Calibration of Watershed Models, Water Science and Applica-
tion, vol. 6. American Geophysical Union, Washington, DC, pp.
239–255.

Koren, V., Reed, S., Smith, M., Zhang, Z., Seo, D.-J., 2004.
Hydrology laboratory research modeling system (HL-RMS) of the
US National Weather Service. J. Hydrol. 291, 297–318.

Koren, V., Schaake, J., Duan, Q., Smith, M., Cong, S., September
1998. PET upgrades to NWSRFC – Project plan, HRL Internal
Report (copy available on request from: Hydrology Laboratory,
Office of Hydrologic Development, NOAA, National Weather
Service, 1325 East-West Highway, Silver Spring, MD 20910, USA).

Kuczera, G., Parent, E., 1998. Monte Carlo assessment of param-
eter uncertainty in conceptual catchment models: the Metrop-
olis algorithm. J. Hydrol. 211 (1–4), 69–85.

Leavesley, G.H., Hay, L.E., Viger, R.J., Markstrom, S.L., 2003. Use
of a priori parameter-estimation methods to constrain calibra-
tion of distributed-parameter models. Calibration of Watershed
Models. In: Duan et al. (Eds.), Calibration of Watershed Models,
Water Science and Application, vol. 6. American Geophysical
Union, Washington, DC, pp. 255–266.

Li, Z., Navon, I.M., 2001. Optimality of variational data assimilation
and its relationship with Kalman filter and smoother. Quart. J.
Roy. Meteor. Soc. 127, 661–683.

Lohmann, D., Mitchell, K., Houser, P., Wood, E., Schaake, J.,
Robock, A., Cosgrove, B., Sheffield, J., Duan, Q., Luo, L.,
Higgins, W., Pinker, R., Tarpley, D., 2004. Streamflow and water
balance intercomparisons of four land surface models in the
North American Land Data Assimilation System project. J.
Geophys. Res. 109 (D07S91), 22.

Madsen, H., 2000. Automatic calibration of a conceptual rainfall–
runoff model using multiple objectives. J. Hydrol. 235 (3–4),
276–288.

Madsen, H., 2003. Parameter estimation in distributed hydrological
catchment modelling using automatic calibration with multiple
objectives. Adv. Water Resour. 26, 205–216.

Maidment, D.R., Olivera, J.F., Calver, A., Eatherall, A., Fraczek,
W., 1996. A unit hydrograph derived from a spatially distributed
velocity field. J. Hydrol. Process. 10 (6), 45–52.

Mazi, K., Koussis, A.D., Restrepo, P.J., Koutsoyiannis, D., 2004. A
groundwater-based, objective-heuristic parameter optimisation
method for a precipitation-runoff model and its application to a
semi-arid basin. J. Hydrol. 290 (3–4), 243–258.

McCabe, M.F., Franks, S.W., Kalma, J.D., 2005. Calibration of a
land surface model using multiple data sets. J. Hydrol. 302 (1–
4), 1209–1222.
Mertens, J., Madsen, H., Feyen, L., Jacques, D., Feyen, J., 2004.
Including prior information of effective soil parameters in
unsaturated zone modeling. J. Hydrol. 294, 251–269.

Miller, D.A., White, R.A., 1999. A conterminous United States multi-
layer soil characteristics data set for regional climate and hydrol-
ogy modeling. Earth Interact. 2. <http://EarthInteractions.org>.

Misirli, F., Gupta, H.V., Sorooshian, S., Thiemann, M., 2003.
Bayesian recursive estimation of parameter and output uncer-
tainty for watershed models. In: Duan et al. (Eds.), Calibration
of Watershed Models, Water Science and Application, vol. 6.
American Geophysical Union, Washington, DC, pp. 113–124.

Mitchell, K., Lohmann, D., Houser, P., Wood, E., Schaake, J.,
Robock, A., Cosgrove, B., Sheffield, J., Duan, Q., Luo, L.,
Higgins, W., Pinker, R., Tarpley, D., Lettenmaier, D., Marshall,
C., Entin, J., Pan, M., Shi, M., Koren, V., Meng, J., Ramsay, B.,
Bailey, A., 2004. The multi-institution North American Assimi-
lation System (NLDAS): utilizing multiple GCIP products and
partners in a continental distributed modeling system. J.
Geophys. Res. 109 (D07S90), 32.

Parada, L.M., Fram, J.P., Liang, X., 2003. Multi-resolution calibra-
tion methodology for hydrologic models: Application to a sub-
humid catchment. In: Duan et al. (Eds.), Calibration of
Watershed Models, Water Science and Application, vol. 6.
American Geophysical Union, Washington, DC, pp. 132–139.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.,
1986. Numerical Recipes. Cambridge University Press, p. 818.

Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., Seo, D.-J.,
2004. Overall distributed model intercomparison project results.
J. Hydrol. 298, 27–60.

Refsgaard, J.C., 1997. Parameterization, calibration, and validation
of distributed hydrological models. J. Hydrol. 198, 69–97.

Schaake, J., Duan, Q., Koren, V., Hall, A., 2001. Toward improved
parameter estimation of land. In: Dolman, Hall, Kavvas, Oki,
Pomeroy (Eds.) Soil–Vegetation–Atmosphere Transfer Schemes
andLand-ScaleHydrologicalModels, IAHSPub.No.270,pp.91–97.

Schweppe, F.C., 1973. Uncertain Dynamic Systems. Prentice-Hall,
Inc., Englewood Cliffs, NJ, p. 563.

Seibert, J., 2000. Multi-criteria calibration of a conceptual runoff
model using a genetic algorithm. Hydrol. Earth Syst. Sci. 4, 215–
224.

Seo, D.-J., Breidenbach, J.P., Johnson, E.R., 1999. Real-time
estimation of mean field bias in radar rainfall data. J. Hydrol.
223, 131–147.

Seo, D.-J., Breidenbach, J.P., 2002. Real-time correction of
spatially nonuniform bias in radar rainfall data using rain gauge
measurements. J. Hydrometeorol. 3, 93–111.

Seo, D.-J., Koren, V., Cajina, N., 2003a. Real-time variational
assimilation of hydrologic and hydrometeorological data into
operational hydrologic forecasting. J. Hydrometeorol. 4, 627–
641.

Seo, D.-J., Koren, V., Cajina, L., Corby, R., Finn, B., Bell, F.,
Howieson, T., 2003b. Real-time variational assimilation of
streamflow and radar-based precipitation data into operational
hydrologic forecasting. Paper: EAE03-A-14671; NH4-1MO4P-
1416, AGU-EGS Meeting, Nice, France.

Smith, M., Laurine, D.P., Koren, V.I., Reed, S., Zhang, Z., 2003.
Hydrologic model calibration in the national weather service. In:
Duan, Gupta, Sorooshian, Rousseau, Turcotte (Eds.), Calibration
of Watershed Models, Water Science and Application, vol. 6.
American Geophysical Union, pp. 133–152.

Smith, J.A., Seo, D.-J., Baeck, M.L., Hudlow, M.D., 1996. An
intercomparison study of NEXRAD precipitation estimates. Water
Resour. Res. 32, 2035–2045.

Smith, M., Seo, D.-J., Koren, V., Reed, S., Zhang, Z., Duan, Q.,
Moreda, F., Cong, S., 2004. The distributed model intercompar-
ison project (DMIP): motivation and experiment design. J.
Hydrol. 298, 4–26.

http://EarthInteractions.org


128 V. Kuzmin et al.
Sorooshian, S., Gupta, V.K., 1983. Automatic calibration of
conceptual rainfall–runoff models: the question of parameter
observability and uniqueness. Water Resources Res. 19 (1), 251–
259.

Teleb, R., Azadivar, F., 1994. A methodology for solving multi-
objective simulation-optimization problems. Eur. J. Oper. Res.
72, 135–145.

Torczon, V., 1997. On the convergence of pattern search algo-
rithms. SIAM J. Optim. 7, 1–25.

Vieux, B.E., Cui, Z., Gaur, A., 2004. Evaluation of a physic-based
distributed hydrologic model for flood forecasting. J. Hydrol.
298, 155–177.

Vieux, B.E., Moreda, F., 2003. Ordered physics-based parameter
adjustment of a distributed model. In: Duan, Q., Sorooshian, S.,
Gupta. H., Rosseau, A., Turcotte, R. (Eds.), Advances in the
Calibration of Watershed Models, AGU Water Science and
Applications Series, pp. 267–281.

Vrugt, J.A., Bouten, W., Gupta, H.V., Hopmans, J.W., 2003a.
Toward improved identifiability of soil hydraulic parameters: on
the selection of a suitable parametric model. Vadose Zone J. 2,
98–113.

Vrugt, J.A., Gupta, H.V., Bouten, W., Soroosian, S., 2003b. A
shuffled complex evolution metropolis algorithm for estimating
posterior distribution of watershed model parameters. In: Duan
et al. (Eds.), Calibration of Watershed Models, Water Science
and Application, vol. 6. American Geophysical Union, Washing-
ton, DC, pp. 105–112.

Whitehead, P.G., Neal, C., Seden-Perrington, S., Christophersen,
N., Langan, S., 1986. A time-series approach to modelling
stream acidity. J. Hydrol 85, 281–303.

Wilson, J., Brandes, E., 1979. Radar measurement of rainfall – a
summary. Bull. Am. Meteorol. Soc. 60, 1048–1058.

Yapo, P.O., Gupta, H.V., Soroosian, S., 1997. Multi-objective global
optimization for hydrologic models. J. Hydrol. 204, 83–97.

Young, C.B., Bradley, A.A., Krajewski, W.F., Kruger, A., 2000.
Evaluation of NEXRAD multisensor precipitation estimates for
operational hydrologic forecasting. J. Hydrometeorol. 1, 241–
254.


	Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search
	Introduction
	Proposed approach
	Overview of overall calibration process
	Bias correction of input data
	Estimation of 1-hour empirical unit hydrograph
	Local optimization of SAC parameters
	Stepwise line search
	Multi-scale objective function (MSOF)


	Study area and data
	Results and evaluation
	Calibration results
	Validation results
	Sensitivity to the quality of a priori estimates
	Sensitivity to the step size

	Summary and conclusions
	Acknowledgements
	References


